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The polarization characteristics of spontaneous radiation from relativistic electrons moving through
helical and planar wiggler fields are evaluated for imperfect beam injection. Maximum coherent gain in
free-electron laser systems are seen to occur in optical fields having these polarization characteristics
rather than those of the wiggler magnets. Coupling coefficients for an electron beam skewed at an angle

to the optical mode are presented.
PACS number(s): 41.60.Cr, 52.20.Dq, 52.75.Ms
I. INTRODUCTION

The polarization characteristics of the amplified radia-
tion in free-electron lasers have been taken to be the same
as that of the wiggler magnet for both perfect [1] and im-
perfect [2] electron beam injections. For perfect injection
and helical wigglers, axial electron oscillations do not
take place; with planar wigglers, axial oscillations appear
at twice the wiggler frequency. For imperfect injection,
axial oscillations occur at the wiggler frequency for both
the helical and planar wigglers. Such axial oscillations
play a significant role in determining the polarization
characteristics of spontaneous radiation. However, these
characteristics do not appear to have been considered in
working out the features of the coherent optical field.
Thus, for instance, Colson, Dattoli, and Ciocci [2], work-
ing with imperfect injection, have assumed an optical
field having the same polarization as that of the wiggler
magnet.

We show in this Brief Report that for imperfect elec-
tron beam injection in a helical wiggler the axial oscilla-
tions lead to an elliptically polarized spontaneous emis-
sion, where both the eccentricity and the azimuth of the
ellipse are injection dependent; for linearly polarized
wigglers the spontaneous emission is also linearly polar-
ized but with an injection dependent azimuth. It is fur-
ther shown that the optical fields having the same polar-
ization characteristics as those of the spontaneous radia-
tion are optimally amplified.

II. FEL DYNAMICS WITH A CIRCULARLY
POLARIZED WIGGLER

A. Spontaneous emission

We consider a wiggler magnetic field
B, =B (cosk(z, —sinkyz,0) along the free-electron laser
(FEL) axis. The transverse velocity components of an
electron (of energy ymc?) entering the magnetic field
with velocity c¢B skewed at an angle to the z axis (i.e., im-
perfect beam injection [2]) are given by
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where ko[ =2m/Ay=w,/c] is the wiggler wave number
and K =eB /mc?k, is the wiggler parameter. 6 and ¥ are
integration constants, such that Eq. (2.7) of Ref. [2] could
be obtained by putting ¥=0. 6=0 corresponds to perfect
beam injection; under this condition the electrons move
along a helix of constant radius K /y about the FEL axis,
the z axis. For imperfect injection, 6+0; the electrons
also experience a drift in the transverse (x,y) directions.
Thus 6 can be looked upon as a measure of deviation
from perfect electron beam injection.

The axial electron velocity 3, is obtained by using the
relation y2=1—(32 +B§ +pB2) along with Eq. (1). Thus
up to the second order in K /y (y >>1)
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where z, is the constant of integration and the overbars
denote averages over the wiggler wavelength. The oscil-
lations in z cause emission into higher harmonics, and
their amplitude determines Y in the argument of the
Bessel functions (see below).
The Fourier transform of the vector potential
representing the spontaneous radiation field is obtained,
using the standard technique [3], as
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where f=1,2,3... is the harmonic number, N is the
number of undulator periods, J, is the Bessel function of
the first kind, and

0 _ 2K 0y
Ja.b= Jf:tl(fx)_ l'tK_ Jf(fX)]y X_ 1+K2+'}/262 .
(5)
The spontaneous energy radiated at frequency

fo,=f27%0xBy/(1+K?+y26?%) in the forward direction
per unit solid angle (d{}) per unit frequency interval
(dfw,) is given by

di
dQdf o,
2
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Kfs(X)zK Jf2+1(fX)+Jf2_1(fX)
2(1+K?) 2
o J}(fx) (7)

Equations (6) and (7) are seen to be independent of the
initial phase 1 of the electron’s axial oscillation represent-
ed by Eq. (2) and have been reported earlier [2]. 1, how-
ever, plays an important role in determining the state of
polarization of the spontaneous radiation. Equation (4)
leads to the expressions for (i) the ratio a,=Q /P of the
amplitudes of the two transverse radiation field com-
ponents and (ii) their phase difference 7,(=6,—0,) (apart
from the factor of 7/2). These are

_1_4"1 canm = — 2J,J,sin2y
Fl > ns JaZ_Jbz

Fi,=J2+J2+2J,J,co82¢ .

a, =+

b

(8)

Thus, the spontaneous emission may be written as
E, =xP cos(fw,t —0,)—yQ sin(fo,t —6,) . )

Viewed along the axis, therefore, the spontaneous emis-
sion is elliptically polarized. The azimuth of the ellipse
varies with 7, but the eccentricity e ={1—[(J,
—Jb)/J,+J, 1*}'/? remains the same.

If (6=0), the axial oscillations are absent, Y vanishes,
(Jo—Jp)/(J,+J},) becomes unity, ey, goes to zero, and
the spontaneous radiation is circularly polarized. Conse-
quently, for perfect injection the spontaneous emission is
confined to the fundamental frequency (f =1). Both the
emission of harmonic frequencies and ellipticity of the
spontaneous radiation are thus related to the presence of
axial oscillations (6+<0).
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B. Interaction with the optical field

Consider an elliptically polarized radiation field of fre-
quency fo,(=fck,,f=1,2,3,...) in the FEL interac-
tion region represented by the vector potential

_ 1 a0 . oy
A, (z,t)= Tk, [XE,sin§; —yE cos§,] , (10
where §&,=fk,z—fw,t+¢ and §,=§& +7.. For

B,~1(y >>1) the transverse optical force is negligibly
small in comparison to the static magnetic force. Thus
the solutions for the electron velocity components and
axial displacement are the same as Egs. (1) and (2). Fol-
lowing the same procedure as in Refs. [1,4] the pendulum
equation may be written as

d2<1>f(7) _ eL*foyB,
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where 7(=ct/L) is the dimensionless time,

®,(1)=f[(k,+ky)Z—w,t] is the dimensionless phase
describing the interaction between the electrons and radi-
ation, and d®,(7)/dT=v/(7) is the slowly evolving di-
mensionless electron velocity.

To derive the slow evolution of the light wave with its
phase averaged over many radiation wavelengths, we
solve the wave equation for A, (z,t) [Eq. (10)], as de-
scribed in Ref. [1]. Thus, we get

d¢+n.)
dr E,
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where p is the electron density. The coupled equations
(11) and (14) describe the FEL dynamics. The real part
constitutes the laser gain and the imaginary part gives the
phase shift.

The gain G/, defined as the fractional change in radia-
tion amplitude for evolution of the optical wave from
7=0to 7=1, is given by

202512 cosvyr—1
G,=3mepL Nf 2 d o1, as)
y>me dvoy Yor
where K fe (=K /[2(1+a?)]V*[F?+a%F?

—2a, F,F,cos(n,—n,)]'’?) is the new coupling factor
and is different from the corresponding factor of Ref. [2].
The axial oscillation in electron motion reduces the cou-
pling between the electron and e.m. radiation (cf. Ref.
[1]D. The reduced optical coupling along the axes of the
ellipse are J, —J, and J, +J,. The azimuth of the ellipse,
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however, depends upon 7.; a,=E,/E, is the ratio of
amplitudes giving rise to elliptically polarized radiation.
The coupling factor «;, varies with 7. and the ratio a,
for the input radiation field. It attains the maximum
value (=«g) when n.=nw+m, and a,==%F,/F, for
odd and even values of n, respectively. Under these con-
ditions the eccentricities of the spontaneous and coherent
radiations are the same. Thus maximum gain occurs for
elliptically rather than circularly polarized [2] radiation.

III. FEL DYNAMICS WITH A
LINEARLY POLARIZED WIGGLER

The trajectory of an electron for imperfect beam injec-
tion through a  linearly  polarized  wiggler
B,=B(0,sink(z,0) is given by Br=X[(K/y)coskyz
+6cosy]+y(6siny), where 6 cosy and Osiny are con-
stants of integration describing the injection angle. The
presence of both the transverse velocity components

2
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changes the polarization characteristics of the spontane-
ous emission compared to that in perfect beam injection.
The axial motion is given by

K2 sin2kyz k@ cosysink,z

z2=7——— ,
8y2 By Y @By
(16)
1 K ..,
=1—— |1+—+9y°6°|.
BO 1 27/2 1 2 Y

Equation (16) shows two types [2] of axial oscillations.
One is at twice the wiggler frequency (present for perfect
injection also). It is responsible for on-axis emission in
odd harmonics. The other oscillation is at the wiggler
frequency that occurs because of imperfect beam injec-
tion. It causes off-axis emission in all the higher harmon-
ics.

The spontaneous energy radiated per unit solid angle
per unit frequency interval is

As = 2 InWXDUp-am+sX2)HTr_am—5(x2)], 8=0,1,

m = — o
K? 2fKv80 cos
X1=— L » X2& JKy .2
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The electric field vector of radiation field resulting from
spontaneous emission is
E,=xPsin[fo,t +f(k,+kq)zo]
+30 sin[fw,t +f(k, +ko)zo] - (19)

The x and y components of spontaneous radiation field
[Eq. (19)] are in the same phase. The ratio a, of ampli-
tudes of the y and x components is

(’}/GSIHIIJ/K)AOJ
Ay +(yOcosp/K)Ag ;-

== 2— =
a="p (20)

Equation (19) thus shows that the resultant vibration is in
the xy plane and is linearly polarized at an angle 7,
(=m/2—tan"'a,) to the direction of the magnetic field.
For perfect beam injection the spontaneous radiation is
linearly polarized perpendicular to the direction of mag-
netic field.

Consider a radiation field linearly polarized at an angle
7. to the direction of the magnetic field. It is represented

in terms of vector potential A,(z,t)=—1/ fk,(;_c\’Excosg 1

sin?[ fo,(1 —Bo)—fwoﬁo]“N_ﬂ
@By (17
[fo,1—By)—foBl
(18)

r

+§’Eycos§1), where E,/E, =a,. Proceeding as in Sec.
II, we see that the pendulum equation for electron
motion is

d*® (1) flo.B,L%E,K

dr? 2y%me?
|4 4 yBeosy , a.y0siny P
Lf K 0,f K 0,f
Xsin[@ (1) +¢] . (21)
Solving Eq. (21) we get the FEL gain as

252512 cosvyr—1

G,= 4 e3pL2Nf }C d (;f 22)
y>me dvos Vor

at the frequency fo,=f2v%w\B,/(1+K?*/2+72%0%).
Here
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_ 1 y 0 cosy
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is the new factor coupling the electron motion and
coherent radiation. As in the case of the helical wiggler,
the coupling factor again becomes maximum (=« ;) for
a.=a, and 1, =1,. Thus we find that the amplification
of the input radiation is maximum when it is linearly po-
larized in the same direction as that of the spontaneous
radiation.

IV. DISCUSSION
The FEL gain with the helical wiggler in Ref. [2] has
been evaluated for a particular case with a circularly po-

larized radiation field, i.e., for E, =E, and 1, =0. In this
situation the gain is

G,= 8me’L*Npf

J,_l(fx)—J;?le(fx)]

y3mc2

cosvyr—1
x4 o 23)
d'Vof ‘Vof
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The second term of Eq. (23) involving 6 (corresponding to
imperfect injection) has been neglected in the gain expres-
sion derived in Ref. [2]. This term is not negligible. Its
omission leads to an error of more than 10% for the fun-
damental frequency for the values considered in Ref. [2],
ie, K=1,y= 10%, and 6=10"3. For the fifth harmonic
the error is nearly 13%. If 0 is increased fivefold the er-
rors shoot up to 68% and 71%, respectively. For these
parameters the gains of elliptically polarized radiation
[Eq. (15) for ks =k, ] for the fundamental and fifth har-
monic are, respectively, 10% and 11% larger than those
[Eq. (23)] of the circularly polarized radiation at the cor-
responding frequencies. For 6=0.005 these enhance-
ments are 33% and 36%, respectively.

For the planar wiggler the terms involving 6 on the
right-hand side of Eq. (21) have again been neglected in
Ref. [2], as the corresponding terms in the case of helical
wigglers. The present work indicates that these terms are
likely to lead to appreciable changes in the FEL gain, as
in the case of helical wigglers as discussed above.
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